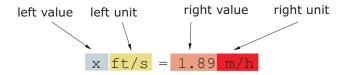
## Velocity Conversions in DLL file

### 1 Introduction

The conversion DLL file of unit Velocity is written in C/C++ programming language style, and do not require any extra code in using this DLL file. This DLL file includes 2 functions to handle the Velocity conversions as follow:


```
double LP_UnitConversionsVelocity_GetLeftValue (char* LeftUnit, char* RightUnit, double RightValue) ;
double LP_UnitConversionsVelocity_GetRightValue(char* LeftUnit, char* RightUnit, double LeftValue) ;
```

## 2 Problems in Velocity conversion

The two functions in DLL file are used to handle all Velocity conversions in two problems.

<u>Problem 1</u> The unknown value is on the **left hand side** of equation

This problem in conversions is described in the figure:

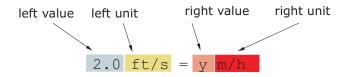


The value x is obtained by either one of two methods:

• Method A : The code is :

```
double x = LP_UnitConversionsVelocity_GetLeftValue("FootPerSecond", "MeterPerHour", 1.89)
```

• Method B : The code is :


```
char LeftUnit[] = "FootPerSecond" ;
char RightUnit[] = "MeterPerHour" ;

double RightValue = 1.89 ;

double x = LP_UnitConversionsVelocity_GetLeftValue(LeftUnit, RightUnit, RightValue) ;
```

#### <u>Problem 2</u> The unknown value is on the **right hand side** of equation

This problem in conversions is described in the figure:



The value y is obtained by either one of two methods:

• Method A : The code is :

```
double y = LP_UnitConversionsVelocity_GetRightValue("FootPerSecond", "MeterPerHour", 2.0)
```

• Method B : The code is :

```
char LeftUnit[] = "FootPerSecond" ;
char RightUnit[] = "MeterPerHour" ;

double LeftValue = 2.0 ;

double y = LP_UnitConversionsVelocity_GetRightValue(LeftUnit, RightUnit, LeftValue) ;
```

(...continue in next page)

# 3 Unit names in Velocity conversions

You can choose the unit name (case sensitive) in the following table for parameters, LeftUnit and/or RightUnit

| MillimeterPerSecond | InchPerSecond |
|---------------------|---------------|
| MillimeterPerMinute | InchPerMinute |
| MillimeterPerHour   | InchPerHour   |
| CentimeterPerSecond | FootPerSecond |
| CentimeterPerMinute | FootPerMinute |
| CentimeterPerHour   | FootPerHour   |
| MeterPerSecond      | FootPerDay    |
| MeterPerMinute      | YardPerSecond |
| MeterPerHour        | YardPerMinute |
| MeterPerDay         | YardPerHour   |
| KilometerPerSecond  | MilePerSecond |
| KilometerPerMinute  | MilePerMinute |
| KilometerPerHour    | MilePerHour   |
| KilometerPerDay     | MilePerDay    |
|                     |               |

When your unit name is not in this table, the returns of functions are -1 and the error message will issue as shown in the following figures:





## 4 Tip

- 1. The parameters in two functions have the same order of unit name (LeftUnit is first and RightUnit is second) and the last parameter is the known value.
- 2. Use function LP\_UnitConversionsVelocity\_GetLeftValue(..) if your **unknown** value is on the **left** hand side of the equation.
- 3. Use function LP\_UnitConversionsVelocity\_GetRightValue(..) if your **unknown** value is on the **right** hand side of the equation.