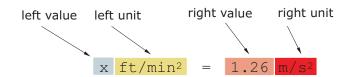
Acceleration Conversions in DLL file

1 Introduction

The conversion DLL file of unit Acceleration is written in C/C++ programming language style, and do not require any extra code in using this DLL file. This DLL file includes 2 functions to handle the Acceleration conversions as follow:


double LP_UnitConversionsAcceleration_GetLeftValue (char* LeftUnit, char* RightUnit, double RightValue) ;
double LP_UnitConversionsAcceleration_GetRightValue(char* LeftUnit, char* RightUnit, double LeftValue) ;

2 Problems in Acceleration conversion

The two functions in DLL file are used to handle all Acceleration conversions in two problems.

<u>Problem 1</u> The unknown value is on the **left hand side** of equation

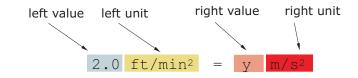
This problem in conversions is described in the figure:

The value x is obtained by either one of two methods:

```
• Method A : The code is :
```

```
double x ;
```

```
x = LP_UnitConversionsAcceleration_GetLeftValue("FootPerMinuteSquared", "MeterPerSecondSquared", 1.26);
```


• Method B : The code is :

```
char LeftUnit[] = "FootPerMinuteSquared" ;
char RightUnit[] = "MeterPerSecondSquared" ;
double RightValue = 1.26 ;
```

double x = LP_UnitConversionsAcceleration_GetLeftValue(LeftUnit, RightUnit, RightValue) ;

Problem 2 The unknown value is on the **right hand side** of equation

This problem in conversions is described in the figure:

The value y is obtained by either one of two methods:

- Method A : The code is :
 - double y ;

```
y = LP_UnitConversionsAcceleration_GetRightValue("FootPerMinuteSquared", "MeterPerSecondSquared", 2.0);
```

• Method B : The code is :

```
char LeftUnit[] = "FootPerMinuteSquared" ;
char RightUnit[] = "MeterPerSecondSquared" ;
```

```
double LeftValue = 2.0 ;
```

double y = LP_UnitConversionsAcceleration_GetRightValue(LeftUnit, RightUnit, LeftValue) ;

(...continue in next page)

3 Unit names in Acceleration conversions

You can choose the unit name (case sensitive) in the following table for parameters, LeftUnit and/or RightUnit

Millin	neter Per Second Squared	InchPerSecondSquared
Millin	neter Per Minute Squared	InchPerMinuteSquared
Millin	neterPerHourSquared	InchPerHourSquared
Centin	meterPerSecondSquared	FootPerSecondSquared
Centin	meterPerMinuteSquared	FootPerMinuteSquared
Centin	meterPerHourSquared	FootPerHourSquared
Meter	PerSecondSquared	YardPerSecondSquared
Meter	PerMinuteSquared	YardPerMinuteSquared
Meter	PerHourSquared	YardPerHourSquared
Kilom	eterPerSecondSquared	MilePerSecondSquared
Kilom	neterPerHourSquared	${\it MilePerMinuteSquared}$
Gal		MilePerHourSquared

When your unit name is not in this table, the returns of functions are -1 and the error message will issue as shown in the following figures:

 or

4 Tip

- 1. The parameters in two functions have the same order of unit name (LeftUnit is first and RightUnit is second) and the last parameter is the known value.
- 2. Use function LP_UnitConversionsAcceleration_GetLeftValue(..) if your **unknown** value is on the **left hand side** of the equation.
- 3. Use function LP_UnitConversionsAcceleration_GetRightValue(..) if your **unknown** value is on the **right hand side** of the equation.